Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 236: 113828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452625

RESUMO

Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.


Assuntos
Nanopartículas , Poliésteres , Poliésteres/química , Glicerol/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Adipatos , Nanopartículas/química
2.
Biomater Sci ; 12(7): 1822-1840, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407276

RESUMO

Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.


Assuntos
Antineoplásicos , Nanopartículas , Ftalazinas , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Combinação de Medicamentos , Linhagem Celular Tumoral
3.
Biomater Sci ; 11(19): 6545-6560, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37593851

RESUMO

The therapeutic efficacy of nanomedicines is highly dependent on their access to target sites in the body, and this in turn is markedly affected by their size, shape and transport properties in tissue. Although there have been many studies in this area, the ability to design nanomaterials with optimal physicochemical properties for in vivo efficacy remains a significant challenge. In particular, it is often difficult to quantify the detailed effects of cancer drug delivery systems in vivo as tumour volume reduction, a commonly reported marker of efficacy, does not always correlate with cytotoxicity in tumour tissue. Here, we studied the behaviour in vivo of two specific poly(2-hydroxypropyl methacrylamide) (pHPMA) pro-drugs, with hyperbranched and chain-extended branched architectures, redox-responsive backbone components, and pH-sensitive linkers to the anti-cancer drug doxorubicin. Evaluation of the biodistribution of these polymers following systemic injection indicated differences in the circulation time and organ distribution of the two polymers, despite their very similar hydrodynamic radii (∼10 and 15 nm) and architectures. In addition, both polymers showed improved tumour accumulation in orthotopic triple-negative breast cancers in mice, and decreased accumulation in healthy tissue, as compared to free doxorubicin, even though neither polymer-doxorubicin pro-drug decreased overall tumour volume as much as the free drug under the dosing regimens selected. However, the results of histopathological examinations by haematoxylin and eosin, and TUNEL staining indicated a higher population of apoptotic cells in the tumours for both polymer pro-drug treatments, and in turn a lower population of apoptotic cells in the heart, liver and spleen, as compared to free doxorubicin treatment. These data suggest that the penetration of these polymer pro-drugs was enhanced in tumour tissue relative to free doxorubicin, and that the combination of size, architecture, bioresponsive backbone and drug linker degradation yielded greater efficacy for the polymers as measured by biomarkers than that of tumour volume. We suggest therefore that the effects of nanomedicines may be different at various length scales relative to small molecule free drugs, and that penetration into tumour tissue for some nanomedicines may not be as problematic as prior reports have suggested. Furthermore, the data indicate that dual-responsive crosslinked polymer-prodrugs in this study may be effective nanomedicines for breast cancer chemotherapy, and that endpoints beyond tumour volume reduction can be valuable in selecting candidates for pre-clinical trials.


Assuntos
Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Polímeros/química , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/química , Linhagem Celular Tumoral , Portadores de Fármacos/química
4.
J Colloid Interface Sci ; 641: 1043-1057, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36996683

RESUMO

Sustainably derived poly(glycerol adipate) (PGA) has been deemed to deliver all the desirable features expected in a polymeric scaffold for drug-delivery, including biodegradability, biocompatibility, self-assembly into nanoparticles (NPs) and a functionalisable pendant group. Despite showing these advantages over commercial alkyl polyesters, PGA suffers from a series of key drawbacks caused by poor amphiphilic balance. This leads to weak drug-polymer interactions and subsequent low drug-loading in NPs, as well as low NPs stability. To overcome this, in the present work, we applied a more significant variation of the polyester backbone while maintaining mild and sustainable polymerisation conditions. We have investigated the effect of the variation of both hydrophilic and hydrophobic segments upon physical properties and drug interactions as well as self-assembly and NPs stability. For the first time we have replaced glycerol with the more hydrophilic diglycerol, as well as adjusting the final amphiphilic balance of the polyester repetitive units by incorporating the more hydrophobic 1,6-n-hexanediol (Hex). The properties of the novel poly(diglycerol adipate) (PDGA) variants have been compared against known polyglycerol-based polyesters. Interestingly, while the bare PDGA showed improved water solubility and diminished self-assembling ability, the Hex variation demonstrated enhanced features as a nanocarrier. In this regard, PDGAHex NPs were tested for their stability in different environments and for their ability to encode enhanced drug loading. Moreover, the novel materials have shown good biocompatibility in both in vitro and in vivo (whole organism) experiments.


Assuntos
Glicerol , Nanopartículas , Sistemas de Liberação de Medicamentos , Poliésteres/química , Preparações Farmacêuticas , Adipatos/química , Nanopartículas/química , Portadores de Fármacos/química
5.
Biomater Sci ; 10(9): 2328-2344, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380131

RESUMO

Hyperbranched polymers have many promising features for drug delivery, owing to their ease of synthesis, multiple functional group content, and potential for high drug loading with retention of solubility. Here we prepared hyperbranched N-(2-hydroxypropyl)methacrylamide (HPMA) polymers with a range of molar masses and particle sizes, and with attached dyes, radiolabel or the anticancer drug gemcitabine. Reversible addition-fragmentation chain transfer (RAFT) polymerisation enabled the synthesis of pHPMA polymers and a gemcitabine-comonomer functionalised pHPMA polymer pro-drug, with diameters of the polymer particles ranging from 7-40 nm. The non-drug loaded polymers were well-tolerated in cancer cell lines and macrophages, and were rapidly internalised in 2D cell culture and transported efficiently to the centre of dense pancreatic cancer 3D spheroids. The gemcitabine-loaded polymer pro-drug was found to be toxic both to 2D cultures of MIA PaCa-2 cells and also in reducing the volume of MIA PaCa-2 spheroids. The non-drug loaded polymers caused no short-term adverse effects in healthy mice following systemic injection, and derivatives of these polymers labelled with 89Zr-were tracked for their distribution in the organs of healthy and MIA PaCa-2 xenograft bearing Balb/c nude mice. Tumour accumulation, although variable across the samples, was highest in individual animals for the pHPMA polymer of ∼20 nm size, and accordingly a gemcitabine pHPMA polymer pro-drug of ∼18 nm diameter was evaluated for efficacy in the tumour-bearing animals. The efficacy of the pHPMA polymer pro-drug was very similar to that of free gemcitabine in terms of tumour growth retardation, and although there was a survival benefit after 70 days for the polymer pro-drug, there was no difference at day 80. These data suggest that while polymer pro-drugs of this type can be effective, better tumour targeting and enhanced in situ release remain as key obstacles to clinical translation even for relatively simple polymers such as pHPMA.


Assuntos
Neoplasias , Pró-Fármacos , Acrilamidas , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Polímeros
6.
Pharmaceutics ; 13(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546301

RESUMO

Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less than 15 months from diagnosis. Low penetration of drugs across the blood-brain barrier (BBB) is a dose-limiting factor for systemic GBM therapies, and as a result, post-surgical intracranial drug delivery strategies are being developed to ensure local delivery of drugs within the brain. Here we describe the effects of PEGylated poly(lactide)-poly(carbonate)-doxorubicin (DOX) nanoparticles (NPs) on the metabolic activity of primary cancer cell lines derived from adult patients following neurosurgical resection, and the commercially available GBM cell line, U87. The results showed that non-drug-loaded NPs were well tolerated at concentrations of up to 100 µg/mL while tumour cell-killing effects were observed for the DOX-NPs at the same concentrations. Further experiments evaluated the release of DOX from polymer-DOX conjugate NPs when incorporated in a thermosensitive in situ gelling poly(DL-lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) matrix paste, in order to simulate the clinical setting of a locally injected formulation for GBM following surgical tumour resection. These assays demonstrated drug release from the polymer pro-drugs, when in PLGA/PEG matrices of two formulations, over clinically relevant time scales. These findings encourage future in vivo assessment of the potential capability of polymer-drug conjugate NPs to penetrate brain parenchyma efficaciously, when released from existing interstitial delivery systems.

7.
Adv Healthc Mater ; 9(22): e2000892, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33073536

RESUMO

The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through architecture change and biodegradation to control in vivo fate. Here, polymeric materials are synthesized with linear, hyperbranched, star, and micellar-like architectures based on 2-hydroxypropyl methacrylamide (HPMA), and the effects of 3D architecture and redox-responsive biodegradation on biological transport are investigated. Variations in "stealth" behavior between the materials are quantified in vitro and in vivo, whereby reduction-responsive hyperbranched polymers most successfully avoid accumulation within the liver, and none of the materials target the spleen or lungs. Functionalization of selected architectures with doxorubicin (DOX) demonstrates enhanced efficacy over the free drug in 2D and 3D in vitro models, and enhanced efficacy in vivo in a highly aggressive orthotopic breast cancer model when dosed over schedules accounting for the biodistribution of the carriers. These data show it is possible to direct materials of the same chemistries into different cellular and physiological regions via modulation of their 3D architectures, and thus the work overall provides valuable new insight into how nanoparticle architecture and programmed degradation can be tailored to elicit specific biological responses for drug delivery.


Assuntos
Polímeros , Neoplasias de Mama Triplo Negativas , Transporte Biológico , Doxorrubicina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
8.
ACS Med Chem Lett ; 11(5): 657-663, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435367

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. Residual cells at the tumor margin are responsible for up to 85% of GBM recurrences after standard treatment. Despite this evidence, the identification of compounds active on this cell population is still an underexplored field. Herein, starting from the knowledge that kinases are implicated in GBM, we evaluated three in-house pyrazolo[3,4-d]pyrimidines active as Src, Fyn, and SGK1 kinase inhibitors against patient derived cell lines from either the invasive region or contrast-enhanced core of GBM. We identified our Src inhibitor, SI306, as a promising lead compound for eradicating invasive GBM cells. Furthermore, aiming at the development of a feasible oral treatment for GBM, we performed a formulation study using 2D inkjet printing to generate soluble polymer-drug dispersions. Overall, this study led to the identification of a set of polymer-formulated pyrazolo[3,4-d]pyrimidine kinase inhibitors as promising candidates for GBM preclinical efficacy studies.

9.
Biomater Sci ; 8(5): 1329-1344, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912808

RESUMO

Combinations of conventional chemotherapeutics with unconventional anticancer agents such as reactive oxygen and nitrogen species may offer treatment benefits for cancer therapies. Here we report a novel polymeric platform combining the delivery of Doxorubicin (DOXO) with the light-regulated release of nitric oxide (NO). An amphiphilic block-copolymer (P1) was designed and synthesized as the drug carrier, with pendant amine groups to attach DOXO via a urea linkage and a NO photodonor (NOPD) activable by visible light. The two grafted-copolymers (P1-DOXO and P1-NOPD) self-assembled via solvent displacement methods into nanoparticles (NPs), containing both therapeutic components (NP1) and, for comparison, the individual NOPD (NP2) and DOXO (NP3). All the NPs were fully characterized in terms of physicochemical, photochemical and photophysical properties. These experiments demonstrated that integration of the NOPD within the polymeric scaffold enhanced the NO photoreleasing efficiency when compared with the free NOPD, and that the proximity to DOXO on the polymer chains did not significantly affect the enhanced photochemical performance. Internalization of the NPs into lung, intestine, and skin cancer cell lines was investigated after co-formulation with Cy5 fluorescent tagged polymers, and cytotoxicity of the NPs against the same panel of cell lines was assessed under dark and light conditions. The overall results demonstrate effective cell internalization of the NPs and a notable enhancement in killing activity of the dual-action therapeutic NP1 when compared with NP2, NP3 and the free DOXO, respectively. This suggests that the combination of DOXO with photoregulated NO release, achieved through the mixed formulation strategy of tailored polymer conjugate NPs, may open new treatment modalities based on the use of NO to improve cancer therapies.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Polímeros/química , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/síntese química , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/química , Processos Fotoquímicos , Relação Estrutura-Atividade
10.
Mol Pharm ; 16(2): 618-631, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30608696

RESUMO

Amphipathic, nonionic, surfactants are widely used in pharmaceutical, food, and agricultural industry to enhance product features; as pharmaceutical excipients, they are also aimed at increasing cell membrane permeability and consequently improving oral drugs absorption. Here, we report on the concentration- and time-dependent succession of events occurring throughout and subsequent exposure of Caco-2 epithelium to a "typical" nonionic surfactant (Kolliphor HS15) to provide a molecular explanation for nonionic surfactant cytotoxicity. The study shows that the conditions of surfactant exposure, which increase plasma membrane fluidity and permeability, produced rapid (within 5 min) redox and mitochondrial effects. Apoptosis was triggered early during exposure (within 10 min) and relied upon an initial mitochondrial membrane hyperpolarization (5-10 min) as a crucial step, leading to its subsequent depolarization and caspase-3/7 activation (60 min). The apoptotic pathway appears to be triggered prior to substantial surfactant-induced membrane damage (observed ≥60 min). We hence propose that the cellular response to the model nonionic surfactant is triggered via surfactant-induced increase in plasma membrane fluidity, a phenomenon akin to the stress response to membrane fluidization induced by heat shock, and consequent apoptosis. Therefore, the fluidization effect that confers surfactants the ability to enhance drug permeability may also be intrinsically linked to the propagation of their cytotoxicity. The reported observations have important implications for the safety of a multitude of nonionic surfactants used in drug delivery formulations and to other permeability enhancing compounds with similar plasma membrane fluidizing mechanisms.


Assuntos
Excipientes/efeitos adversos , Polietilenoglicóis/farmacologia , Estearatos/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Caspase 3/metabolismo , Caspase 7/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Oxirredução/efeitos dos fármacos , Polietilenoglicóis/efeitos adversos , Estearatos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...